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ABSTRACT 

Parallel kinematic manipulators have a well advantage over the serial manipulators 

due to their higher stiffness and large load carrying capacity. These advantages have 

increased the uses of parallel mechanisms in many applications. This thesis mainly 

addresses the issues regarding stiffness estimation of prismatic revolute spherical 

(3PRS) parallel mechanism. A simple and comprehensive approach is presented to 

estimate the stiffness of 3PRS mechanism. 

As the name, the 3PRS manipulator has three identical limbs with each limb have 

prismatic revolute and spherical joint. In order to get the desired goal of this research, 

the kinematic with forward and inverse analysis, jacobian, and singularity analysis is 

performed and discussed as the root. Autodesk inventor professional software is used 

to design the CAD model of the proposed 3PRS mechanism. 

Starting with the inverse kinematics an analytical model is derived. As well as the 

forward kinematic both analytical and numerical analysis is performed to ensure the 

efficiency of the presented methodology; the results are compared with the presented 

CAD model. Singularity analysis is done and three common types of singularities are 

discussed in this thesis. 

The results of the inverse and forward kinematics are obtained by writing a program 

in MATLAB
®
. The results are compared with the prototype CAD model and they are 

closely related. The stiffness model results obtained by numerical calculations are 

compared with the FEA of the CAD model. These results are closely matched with a 

percentage error of 0.1 %. 
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Chapter 1 

1. INTRODUCTION 

The robots play an important part for manufacturing, especially for automation with 

improved quality products in industry. Now a day the robots are flexible and can be 

capable to produce different verity of products. They are faster, accurate and reliable. 

Robots are preferred due to their low manufacturing cost and accuracy. Robots have 

many applications in industry like automobile industry that is totally automated 

production lines or a machine tool manufacturing industry with CNC machines. Other 

applications include automated production system in pharmaceutical industry, process 

industry, packing industry and so on. The increase dependence of industrial work on 

robots is due to its cheaper manufacturing cost, more efficient and accurate work. 

Depending upon application, a robot structure can have a number of links, joints, 

fixed base and End effecter. For Example in dirt and muddy environment, a robot can 

constructed like a caterpillar truck, or for machining purpose it can be a CNC machine 

Tool .Applications are also dependent upon the type of links and joint. 

A series of links and joints in a robot manipulator are driven by the actuators. 

Workspace is an objective which depends upon the links configuration, like a serial 

robot large workspace and flexibility can be achieved but due to its serial 

configuration it has less accuracy. Parallel robots; on the other hand have higher 

stiffness and precision as compare to the serial robots. 

1.1 Robot Classification 

Robots can be classified on the basis of different measure these are listed below. 

1. Degree of freedom 

2. Kinematic structure 

3. Workspace geometry 

4. Nature of Motion 

5. Control methods  

6. Accuracy and Repeatability 
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Kinematic is the most common and important property of the manipulators so this 

property is discussed here. 

1.1 Kinematic structure 

There are two main types of the robots on the basis of kinematics. 

1. Serial robots 

2. Parallel Robots 

1.1.1 Serial Robots 

Serial robot also known as serial manipulator is most commonly used in industry. In 

serial manipulators series of links are connected by joints that form an open kinematic 

chain as shown in Fig 1.1. Their large workspace is the main advantage. But they 

cannot be reliable in high stiffness and accurate application due to open kinematic 

chain. Also they have higher weight because they carry actuators along each actuated 

joint. Inside the workspace, normally six degrees of freedom, a robot required to 

manipulate and object to desire position and orientation. 

 

Fig. 1.1 Serial manipulator [19] 

Kinematic analysis is used to develop the position and orientation of the end effecter 

with reference to the fixed base. Kinematic analysis, also called the position analysis 

has two different types: forward kinematics and the inverse kinematics. In forward 

kinematic problem is to find the position of the end effecter and the joint variables are 

given. In inverse kinematic problem joint variables are required and the end effecter 
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position is known. In serial manipulators the direct or forward kinematic is simple but 

the inverse kinematic is hard to solve. Different researchers have developed different 

methods to solve the kinematic of serial mechanism. 

1.1.1 Parallel Robots 

Parallel robot also known as parallel manipulator is well known due to its higher 

accuracy and stiffness. In parallel manipulators number of closed kinematic chains are 

connected to the moving platform and fixed base as shown in Fig.1.2. One of the joint 

in each limb is actuated independently, mostly the prismatic actuator, connected to the 

moving platform by passive revolute, spherical or universal joint. Normally the 

number of limbs is equal to the number of degree of freedom. Parallel manipulators 

are also called platform manipulator because their end effecter is work like a platform. 

Parallel manipulators have large load caring capacity due to its parallel structure. 

Parallel manipulator has many applications like air plane simulator, mining machine, 

medical & surgical application, high precision machining centers etc. Comparison of 

the characteristic of serial and parallel manipulator are listed in Table 1.1 

 

Fig. 1.2 Parallel manipulator [19] 

 

 

  

 



 

4 

 

Table 1.1 Comparison of the characteristic of serial and parallel manipulator 

Feature  Serial Robot  Parallel Robot 

Workspace Large Small and complex 

Solving Forward 

Kinematics 

Easy Very difficult 

Solving Inverse 

Kinematics 

Difficult Easy 

Position Error Accumulates Averages 

Force Error Averages Accumulates 

Stiffness  Low High 

Dynamic Characteristics Poor Very high 

Modeling and Solving 

Dynamics 

Simple Complex 

Inertia Large Small 

Area of Application Great number of 

application 

Currently limited but 

increasing 

Payload to weight ratio Low High 

Speed and Acceleration Low High 

Accuracy Low High 

Uniformity of components Low High 

Calibration Simple Complex 

Workspace to Robot size 

ratio 

High Low 
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Similar to serial manipulator, parallel manipulator have two type of kinematics: direct 

and inverse kinematics. Direct kinematics in parallel manipulator is difficult as 

compare to Inverse kinematics. 

1.2 Research objectives 

  To understand the difference between the serial and parallel mechanisms 

 To understand and solve the inverse and forward kinematics of the 3PRS 

manipulator 

 To find the jacobian velocity and singularities of the 3 PRS mechanism  

 To develop the CAD model based design of 3PRS mechanism and compare 

the results with the mathematical model. 

 To find the stiffness model of the 3PRS mechanism and compare with the 

FEA 
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Chapter 2 

2. LITERATURE SURVEY 

2.1 Literature review 

Historically, Parallel manipulator firstly introduced by Gough and Whitehall in 1962 

[1] for universal tire testing machine, in which they used 6 universal jacks in parallel 

arrangement sand introduce a new trend in the field of parallel manipulators. Stewart 

was then introduced the platform for airplane simulator [2]. Kinematic study of 

parallel manipulator was 1
st
 introduced by Hunt [3].Different researcher studied 

parallel mechanism in different ways [4], up to now almost 100 of different kinematic 

configuration of parallel manipulators are proposed. Parallel manipulators classified 

in two main branches, planner and spatial manipulator. Planner parallel manipulator 

has also studied for kinematic position analysis by Gosselin & Angeles [5]. They 

introduced a 3-RRR configuration in planner manipulator. Detail position analysis of 

planner manipulator is found in [4]. 6-DOF spatial parallel manipulator is mostly 

studied to date which consists of six actuators. Kinematic Analysis of most commonly 

6-DOF Stewart Gough mechanism with SPS limb configuration is found in [6]. 

Tripod based 3DOF parallel manipulator were studied by many researchers for their 

kinematic performance and workspace volume. A general 3RPS parallel manipulator 

was studied by Lee and Shah [7], for kinematic analysis. Up to now tripod parallel 

manipulators are developed for many configurations like, PRS, SPS, RPS,UPU 

etc.Carretero, et al.,[8] introduced 3PRS manipulator with each limb have prismatic 

revolute and spherical arrangements, the inverse position model were derived and 

addressed the issues with the parasitic motions and optimization of the architecture for 

parasitic motion minimization. In Carretero et al. model three actuators lies on the 

same plane with zero inclination angles . Tsai, et al.[9] introduce a new architecture 

design for 3PRS mechanism, in which three actuators are parallel to each other and 

have the inclination angle  is equal to 90
o
. Forward kinematics of that model was 

solved. A new architecture with the actuator line of action intersect at common point 
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at angle , inverse kinematics of this type of manipulator is solved and a square 

jacobian is derived by the screw theory, both dexterous and reachable workspace is 

analyzed at different inclination angle [10]. 

Jacobian and singularity analysis of parallel manipulator is also important for optimal 

kinematic design and velocity analysis. Gosselin, C. and J. Angeles [11] introduced 

singularity analysis of different closed kinematic chains. They separate the jacobian 

matrix into two types for inverse and forward kinematic singularities. They use the 

velocity equation for writing the jacobian matrix. Singularity analysis of inclined 

3PRS manipulator is performed by [10] to limit the reachable workspace of the 

manipulator. Maximum and minimum permissible elevation of the angle was 

derived for forward and inverse singularity. There is two type of methods found in 

literature to formulate the jacobian matrix for parallel manipulators, one is the 

conventional jacobian and the other is the screw based jacobian. Conventional 

jacobian has formulated for parallel manipulators by several researchers [4, 6] in 

which they use velocity vector loop method. The vector loop equation of the fixed 

based, moving platform and combining links is written, and joint rates of un-actuated 

joints are then eliminated by dot product with a normal vector to the vector loop 

equation, which produce a jacobian matrix. Screw base jacobian on the other hand [6, 

12] find twist and joint rates of the moving platform by using screw coordinates. 

Reciprocal screws of some kinematics pairs and chains are presented by Tsai, L.-W 

[12] by the intersection of reciprocal screws. In the screw based approach the unit 

screws of each joint in kinematic chain is expressed in terms of the instantaneous 

referance frame and resulting equation gives the jacobian matrix based on screw 

theory. 

Stiffness is one of the fundamental performance specification in designing of the 

parallel manipulators. Higher stiffness is needed in high accurate and application 

involving larger loads and forces. High speed machine tools needs high speed 

machining and accurate movement of the moving platform. Stiffness of the planner 

and special manipulator firstly investigated by [13] in which He shows the relation 

between the joint forces and torques with the end effector by the jacobian matrix. 

Stiffness of the different type of parallel manipulator is found in literature [4, 6] e.g. 
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planner , shoulder manipulator and Stewart platform. Stiffness  model of tripod based 

parallel mechanism were developed in [14] by the method of equivalent stiffness for 

linear connected springs in series. They decomposed the structure into two 

substructures. One of them is the machine frame structure and other is the actual 

mechanism structure.  They combined the whole stiffness of the manipulator by 

principle of virtual work and linear superposition techniques. The stiffness matrix for 

the 3PUU type manipulator was derived by [15].They derived the stiffness by 

considering the actuator and constraints imposed by passive joint. They also consider 

the compliance subject to involved legs and the actuators in the final stiffness matrix. 

Both Xu, Q. and Y. Li investigated the stiffness and mobility of the 3 PRC type 

manipulator approach based on screw theory by considering the actuator and 

constraints [16]. Stiffness modeling for over-constrained  type manipulator is 

developed by Pashkevich, et al.,[17] they generate the translational and rotational 

compliance by replacing the mechanism link into a 6-DOF virtual springs. The 

presented model was applied to the 3PUU and PRPaR mechanism. The stiffness 

model for 3PSP type manipulator is presented in [18] by assuming the flexible 

moving platform instead of the rigid type. The mathematical model was derived base 

on the strain energy and compared with the FEM model results. 

2.2 Literature summery  

Different researchers have study parallel manipulators for different architecture  most 

of studies found in literature is based on kinematic and singularity analysis of 

different mechanism like SPS, UPU, RPS etc. while very less literature is found on 

PRS type mechanisms. Kinematic analysis of 3PRS mechanism is done by some 

researchers but detail study is not found in literature. Especially, the stiffness analysis 

of 3PRS mechanism is not done because of the non square jacobian matrix. So there is 

a research gap. This research mainly addresses the issues regarding stiffness 

estimation and compared the results with the CAD model. 
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Chapter 3  

3. KINEMATIC ANALYSIS 

3.1. Introduction: 

In kinematic analysis of Parallel mechanism, the motion study of mechanisms is 

performed, without the forces taking into account. In kinematic position, velocity and 

acceleration is studied. Kinematic analysis is basically the relation between the end 

effecter pose and the geometry of the manipulator. 

3.2. Kinematic analysis of 3PRS manipulator: 

This chapter will study the position of the manipulator. First the inverse kinematics is 

done, in which the position of the end effecter is known and actuator position will be 

derived. 

In the second part, the forward kinematics is explained, in which the position of the 

end effecter is found while having the input parameters. The input parameter means 

the position of the actuators. 

3.2.1 Mechanism Description: 

The CAD model of the 3PRS manipulator is shown in Fig 3.1. The mechanism 

consists of fixed base, moving platform and the mechanism’s structure. Moving 

platform is connected with the fixed base by three kinematic chains. Each limb 

consists of Prismatic, Revolute and Spherical Joints in series. The prismatic joint is 

active by three actuators at each link. Total kinematic structure is based on three 

identical prismatic, revolute and spherical linkages. The 3-PRS mechanism has three 

degree of freedoms; one of them is the vertical translational movement and two 

rotations about two axes in horizontal plane. 
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Fig. 3.1 The CAD model of the 3PRS manipulator 

The vector representation of the 3-PRS mechanisms are shown in Fig 3.2. The fixed 

based triangle  has the center point at which a Cartesian reference frame 

is attached. Point is attached to the center of moving platform with the 

coordinate frame  and the moving platform triangle .vector is in 

the direction of x-axis and the vector OB1is in the direction of u-axis. 

 

Fig. 3.2 Vector representation of the 3-PRS mechanism 
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3.2.2 Geometry of the manipulator: 

From the geometry of the 3-PRS manipulator three linear actuators for  

intersect at common point . Point  lies on a circle with radius .other parameters 

are listed below. 

is the fixed base platform radius 

is the moving platform radius 

is the  fixed length of each leg 

is the actuator layout angle 

is the  to  and to  

is the position vector from  to  

is the  to  and to  

is the angle between fixed based and fixed leg length  

is the vector from  to  

is the vector from  to  

is the set of actuated joint variables =  

are the Euler Angles 

is the set of Cartesian variables =  

are the unit vectors of moving platform  
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are the unit vectors of fixed base 

 

Fig. 3.3 Vector diagram of one kinematic chain 

The rotation matrix from  to  in terms of direction cosines can be written as 

=  =  (3.1) 

      (3.1) 

=        
 (3.2)

  

    
 (3.3) 

 

   (3.4) 
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Where  represents the cosine and  represents the sine. The total transformation from 

the moving platform to the fixed base is composition of rotation matrix   and the 

position vector . 

From the Fig 3.3 the position vectors from frame  to point  and frame  to point 

 can be describe by notation   and   , respectively. The leading superscript 

can be omitted in case of the fixed frame e.g .for  these vectors 

can be written as. 

 
(3.5) 

  (3.6) 

 
(3.7) 

 
(3.8) 

        (3.9) 

        (3.10) 

From Fig.3 the vector loop equation 

 
(3.11) 

Where  

   
(3.12) 

Substituting Eq. (3.1) and (3.8) through (3.10)into Eq. (3.11) yields 
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(3.13) 

 

(3.14) 

 

(3.15) 

The mechanical constraints imposed by the revolute joint in which the spherical joint 

 can only be move in plane defined by their linear actuator and the fixed leg length. 

Therefore we get following relationship. 

 

(3.16) 

Where for  and  respectively 

From Eq. (3.16) for , we get following three equations. 

 

 (3.17) 

 

 (3.18) 

 

(3.19) 

Substituting the elements of  from Eq. (3.13) to (3.15) into Eq. (3.17) to (3.19) 

yields. 
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(3.20) 

 
(3.21) 

 
(3.22) 

Taking 2 x (3.20) - (3.21) - (3.22) yields  

  
(3.23) 

Subtracting Eq. (3.21) from Eq. (3.22) we get. 

  (2.24) 

Hence, motion of the moving platform is constraints by three equations (3.20), (3.23) 

and (3.24). 

3.3. Inverse kinematics: 

The inverse kinematic of 3PRS parallel mechanism is to find the actuators position 

from a given position and orientation of the moving platform. To find the inverse 

kinematic solution vector loop method is used. Form the Fig.3.3  is obtained.  

 
(3.25) 

And loop closure for  is 

 

(3.26) 

Where  

and  are the position vector of the th linear actuator and fixed leg length, 

respectively. 

From Eq.(3.26) 
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(3.27) 

Squaring both sides of Eq.(3.27) 

   
(3.28) 

  
(3.29) 

Applying quadratic formula, where a=1, b =  and c=  we get 

 
(3.30) 

Eq. 3.30 gives two solutions for each linear actuator +ve and –ve, and for moving 

platform, position and orientation there are total eight possible solutions. Six of them 

are for three actuators and two for the final matrix In this study only 

the negative square root is selected, in which three legs are inclined inward from top 

to bottom. 

3.3.1 Flow diagram for Inverse Kinematics 

Flow diagram for forward kinematics is shown in Fig 3.4. The length of the actuators 

is calculated from the given inputs , and . First the program calculates the , 

 and  from the constraint equations (3.20), (3.23) and (3.24) by computing the 

rotation matrix. Then the vectors form origin to spherical joint is calculated to find the 

unit vectors of actuators. The vector is then calculated from point A to B. The 

calculated unit vectors of actuators and vector  used as an input to find the inverse 

kinematic solution for 3PRS manipulator. MATLAB code is implemented to find the 

solution that is shown in appendix A. 
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Fig. 3.4 Flow diagram for inverse kinematics of the 3-PRS mechanism 

3.4. Forward kinematics: 

The forward kinematic of 3PRS parallel mechanism is to find the position and 

orientation of the moving platform from a given actuators position. To find the 

forward kinematic solution vector loop method is used. Form the Fig.3.3 we obtain  

  
(3.31) 

Where for  and  can be written as 

 
(3.32) 

 
(3.33) 
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(3.34) 

 
(3.35) 

 
(3.36) 

 
(3.37) 

Putting the values of vectors in Eq.(3.31),the value of three vectors  and can 

be obtained as. 

 

(3.38) 

 

(3.39) 

 

(3.40) 

From the geometry of the moving platform we can find the geometric distance 

between the two spherical joints i.e.  and , in which .  

 
(3.41) 

 Where  is the resultant of two vectors  and  so the Eq.(3.41) can be 

written as. 

 
(3.42) 
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(3.43) 

We can write Eq.(3.43) in terms of  and as. 

              

(3.44) Putting the values of vectors  and  from Eq.(3.38) to(3.40) into 

Eq.(3.44) we obtain  

 

                  (3.45) 

Where for and . 

 

 

 

 

 

 

 

Putting the trigonometric identities in Eq.(3.45) we get 

, , and           (3.46) 

                (3.47) 
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Multiplying whole Eq.(3.47) by  and simplifying. 

                   (3.48) 

Where for  1,2 and 3. 

 

 

 

 

 

 

 

 

 

Eq.(3.48) represent three fourth-degree polynomials in ,  and  which can be 

eliminated by Sylvester dialytic method which reduces the Eq.(3.48) system of 

equation into a16th-degree polynomials in one variable as follows. 

In the first step eliminate  for which we write Eq.(3.48) for 2 and  3 to 

reduce two second-degree polynomials in . 

                  (3.49) 

                  (3.50) 
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From Eq.(3.49). 

               (3.51) 

               (3.52) 

               (3.53) 

and from Eq.(3.50) 

               (3.54) 

               (3.55) 

               (3.56) 

Writing these coefficients as 

                (3.57) 

                (3.58) 

Taking  and  yields two equations as 

follows 

              (3.59) 

              (3.60) 

Writing Eq.(3.59) and (3.60) in Matrix form as 

              (3.61) 

Taking the determinant of the coefficients matrix from Eq.(3.61) to eliminate the . 

             (3.62) 

Now we have to eliminte  from Eq.(3.62) by writing the values of  from 

Eq.(3.51), (3.52) and (3.53) will gives 
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              (3.63)  

Here we have from Eq. (3.63) 

              (3.64)   

              (3.65)    

             (3.66)   

               (3.67) 

          (3.68) 

Writing Eq.(3.48) for 1 and  2 

                  (3.69) 

Taking coefficents of  as 

               (3.70) 

               (3.71) 

               (3.72) 

Eq.3.69 will become  

                (3.73) 
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Taking (3.73)×  – (3.63)×  

            (3.74) 

Now taking (3.63)× (3.73) ×     

          (3.75) 

Multiplying Eq.(3.73) by we get  

                (3.76) 

From Eq.(3.73) to (3.76) we can write  

           (3.77) 

We can find the  by expanding Eq.(3.77) which gives eight pairs of solutions with 

eighth-digree  polynomials in  .Once  is found, we can find  by Eq.(3.73) and 

(3.63). we can find  with a unique solution with .finally we can find the 

 and  with the help of above equations.    

Once, value of  is found we can find the position vector  and  for the 

position vector  of the moving platform. 

                (3.78)  

The unit vector and  can be found by the rotation matrix  as 

                 (3.79) 
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                 (3.80) 

                 (3.81) 

The Euler Angles  can be found by Eq.(3.1) and (3.4) as 

                (3.82) 

                (3.83) 

                (3.84)  

Above presented approach is the analytical method to find the forward kinematics for 

all possible configurations for the moving platform. However, most of the solution is 

meaningless and this approach is time consuming. So numerical method is preferred 

as compared to the analytical method. One of the numerical method is presented 

below. 

3.4.1 Numerical Solution: 

Newton method is one of the most powerful and well-known numerical methods for 

solving an equation of type . This technique is quadratically convergent as 

we approach the root.Unlike other numerical methods, the Newton-Raphson 

technique requires only one initial value, which we will refer to as the initial guess for 

the root. 

To understand its algorithm, one start with an initial guess that should be reasonably 

close to actual root, the function is then approximated by its tangent line. The next 

step is to calculate the x-intercept of this tangent line.  Now this intercept is a better 

approximation of the function’s root than the initial guess. The method is then iterated 

over. 

The iterative formula for Newton – raphson method is given by  
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                 (3.85) 

3.4.2 Flow diagram for forward kinematic 

The flow diagram for forward kinematic is shown in Fig 3.5 starting with the known 

joint space co-ordinate and the initial guessed joint space co-ordinates, the jacobian 

matrix is calculated the new joint space co-ordinates is calculated and the program 

check the difference between the given and calculated co-ordinates. If the difference 

is less or equal to the given tolerance the program end with the forward solution 

otherwise its update the co-ordinates and re-calculate the jacobian un less the 

specified tolerance is achieved. 

 

Fig. 3.5 Flow diagram for forward kinematic of 3PRS parallel manipulator 
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Chapter 4  

4 JACOBIAN VELOCITY ANALYSIS 

4.1 Introduction: 

Depending upon the robot applications the end effector also called the moving 

platform, has to move with prescribed speed on desired path, which can only achieve 

by controlling the each of the joint motion in joint space. Fig 4.1 -shows typical 

application of the parallel robot for ultra fast picks and place application. 

 

Fig. 4.1 Parallel robot for ultra fast pick and place application [19] 

The jacobian matrix also called jacobian is the transformation matrix between the 

joint coordinates and the end effector coordinates. There are two most commonly 

types of jacobian matrix are the screw based jacobian and the conventional jacobian. 

There are many other types of methods found in literature because the velocity state 

of the end effector can be derived in different ways. The jacobian are very important 

for velocity and the stiffness analysis. 

Comparatively, the jacobian analysis of serial manipulators are simple than that of the 

parallel manipulators because kinematic structure of the parallel manipulators are 

based on several links that form number of closed kinematic chains. Singular 

configuration is an important notion at which the parallel manipulators loses its 
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inherent rigidity or stiffness within the workspace, because its gain one or more 

degrees of freedom. Different researchers study this property like Gosselin & Angeles 

[11] suggested direct kinematic singularities and inverse kinematic singularities by 

separating the jacobian in to two matrices. These two matrices separated by direct and 

inverse kinematics of the manipulator. One another special kind of singularity is 

combined singularity which occurs in special kinematic architecture of the 

manipulator. Loop closure method and the method of reciprocal screws are most 

commonly used in jacobian analysis for parallel manipulators. 

4.2 Jacobian Matrix for Parallel Manipulators: 

In parallel manipulator the end effector is connected with the fixed base by several 

limbs. When the number of limbs equal to the degrees of freedom manipulator known 

as fully parallel or non redundant manipulator. Some of the joint in each limb are 

driven by actuator and the other joint are depends upon the movement of the actuator 

they are known as the passive joints. If the numbers of actuators of the manipulator is 

more than the degree of freedom, that kind of manipulator is called redundant 

manipulator. Let we have  equal to the number of degrees of freedom and  equal to 

the number of actuators in manipulator, then for the fully parallel manipulator  

and for redundant manipulator . If we have a vector  for the actuator joints 

coordinates and  vector described the position and orientation of the moving 

platform. We can write the kinematic constraints impose by the limbs as. 

 

(4.1) 

Where  represent the function of n-dimensional non-linear equations and  is the 

zero vector of n-dimensions. Differentiating the above equation with respect to time 

gives the relation between the end effector output velocity and input joint rates as 

follows. 

 

(4.2) 
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Where 

  and   
(4.3) 

Two different jacobian matrices are obtained from the above derivation. These two 

matrices can be written as overall jacobian matrix . 

 

(4.4) 

Where 

 

(4.5) 

4.3 Velocity Analysis: 

There are two types of velocity kinematics based on inverse and forward analysis. The 

relation between joint end effector coordinates and the actuators joint rates, there are 

two most commonly methods found in literature. Screw based jacobian and the 

conventional jacobian, also known as velocity loop closure method. Velocity loop 

closure method is used here to find the inverse and forward velocity of 3 PRS 

manipulator.  

4.3.1 Inverse Velocity Analysis: 

For 3 PRS manipulator the inverse velocity analysis is to find the velocity of the 

linear actuators form the given velocity state of the end effector.  

From Fig.3.3 we can write the vector loop equation for th link as 

                 (4.6) 

Where for 1to 3,  is the unit vector of fixed leg length,  is the unit vector of 

linear actuator and  is the linear displacement of the th actuator. Unit vector  can 

be expressed for each actuator as. 

                 (4.7) 
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               (4.8) 

                (4.9) 

Differentiating with respect to time both sides of Eq.(4.6) yields  

               (4.10) 

Where cross product of vectors is expressed as “X”,  is the three dimensional 

angular velocity and  represent the three dimensional linear velocity of the end 

effector. th linear actuator velocity is represented by and fixed leg length as . 

Since the  is the passive variable and it can be eliminated by the dot multiplication 

of  to the Eq. (4.10), which gives 

              (4.11) 

Where dot product of vector expressed as “.” 

Since we know that  

Eq. (4.11) can be rewritten as  

              (4.12) 

Writing above Eq. (4.12) three times for  yields 

                 (4.13) 

Where 

               (4.14) 
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             (4.15) 

is the vector of end effector velocities and   is the 

vector of actuated joint rates. Eq. (4.13) can be written as  

                 (4.16) 

Where  and Eq.(4.16) correspond to inverse kinematic solution for 3PRS 

parallel manipulator. is the 3×6 matrix.  

4.3.2 Constraint Jacobian 

The vector  has the linear and angular velocity components, but not all six of them 

are independent because of the mechanical constraint imposed by the revolute joint. 

The 3PRS manipulator has only 3-DOF and other 3-DOF are constraint by the 

Eq.(3.20), (3.23) and (3.24).by using these equation we can derive the relation for 

constraint jacobian. Putting the components from the rotation matrix in constraint 

Eq.(3.20), (3.23) and (3.24) 

                (4.17) 

               (4.18) 

              (4.19) 

The angle  can be obtained from Eq.(4.18) as 

                (4.20) 
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From Eq.(4.20) we canfind the  and  other three variables of   are ,  and , 

which are indepandant and the three constraints variables ,  and  can be found 

by ,  and . Let suppose  at the non singular point we can write 

                 (4.21) 

Where  

               (4.22) 

From Eq.(4.21) and (4.16) we can find 

                 (4.23) 

Where  is called the constraint jacobian matrix, which is 3×3 square matrix 

for 3PRS manipulator. 

4.3.3 Forward Velocity Analysis 

For 3PRS manipulator the forward velocity analysis is to find the velocity state of the 

end effector velocity of the linear actuators form the given velocity of the linear 

actuators.  

From Eq.(3.11) 

  

By differentiating above Eq. with respect to time gives. 

                (4.24) 
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Where  is the three dimensional velocity of the ith spherical joint. Let suppose the 

axis of Revolute joint has a unit vector , which is perpendicular to the  due to 

mechanical constraints. To eliminate  dot multiply by  to both sides of Eq.(4.24) 

yields. 

               (4.25) 

Since we know that  

So Eq.(4.25) becomes  

               (4.26) 

Writing above Eq. (4.26) three times for  yields 

                 (4.27) 

              (4.28) 

and                 (4.29) 

From Eq.(4.13) and (4.27) we can derive the forward velocity relation as. 

                 (4.13) 

                 (4.27) 

Writing above equations into another matrix form as. 

              (4.30)  

Let  and  the Eq.(4.30) becomes  
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                (4.31) 

                (4.32) 

Let   the Eq.4.32 can be written as 

                 (4.33) 

The Eq.(4.33) shows the forward velocity solution for 3PRS manipulator.  

4.4 Singularities Analysis 

Singularities of parallel manipulators have been the area of interest for many 

researchers. First Gosselin and Angeles described three types of singularities for 

closed mechanism. These three singularities were based on the root of jacobian 

matrices. Tsai term these three as forward, inverse and combined singularities. 

Zlatanov, Fenton and Benhabib refined the classification further by adding 3 more 

singular configuration to the above three. Another type of singularity called constraint 

singularity was discovered by Zlatanov, Bonev and Gosselin. 

 

These singularities occur, respectively, when 

1. Matrix  is rank deficient, or 

2. Matrix  is rank deficient, or 

3. The positioning equations degenerate. 

For serial manipulators, only the first type of singularity occurs. 

4.4.1 Inverse Kinematics Singularity  

The inverse kinematic singularity is related with the rank of matrix . When the 

matrix becomes rank deficient this type of kinematics singularity occurs. For the  

to be rank deficient following condition must occurs 
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                 (4.34) 

The occurrence of this type of singularity is because the corresponding configurations 

occur at the boundaries of workspace. These boundaries can also be internal 

boundaries between the sub regions of workspace where the number of solutions of 

inverse kinematics problem is not the same. For these cases, the null space of  is not 

empty and there exist a non-zero q vector which corresponds to a Cartesian Twist 

vector which vanishes. 

In other words, infinitesimal motion of platform along certain directions is restricted. 

This results in the loss of one or more degree of freedom of the manipulator. Also at 

this type of singularity the resistance of forces and moments occurs in some direction 

with zero actuator forces or torques. 

4.4.2 Forward Kinematics Singularity  

Same as the case of Inverse kinematics singularity, the forward kinematic singularity 

occur when the matrix   is rank deficient. As the matrix is an matrix 

with , this occurs when the condition 

                 (4.35) 

For redundant actuations, the matrix becomes square and the condition is 

reduced to  

                 (4.36)

            

This type of singularity occurs within the workspace of manipulator corresponding to 

the set of configuration where two different branches of forward kinematic problem 

meet. 

For serial manipulator this type of singularity does not occur because of unique 

solution of forward kinematics. The null space of matrix of is not empty showing 
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the existence of non-zero Cartesian twist vectors . This means that infinitesimal 

motion of actuator is possible even when the actuators are locked. When this type of 

singularity occurs the manipulator gain one or more degree of freedom in the 

corresponding direction, also the stiffness of manipulator becomes zero. 

4.4.3 Combined Kinematics Singularity  

The nature of this type of singularity is of a slightly different from the first two. As 

the name suggest the combined kinematics singularity occurs when both and 

becomes zero. This corresponds to degeneracy of orientation or position equation. 

This type of singularity occurs when the manipulator is under some special constraints 

on geometric parameter. Such singularities will lead to configurations where a finite 

motion of the end effector is possible even if the actuators are locked or in situations 

where a finite motion of the actuators produces no motion of the end effector. In both 

cases, the manipulator cannot be controlled. 
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Chapter 5 

5 STIFFNESS ANALYSIS 

5.1 Introduction 

In many applications, the moving platform of a parallel manipulator is in contact with 

a stiff environment, and applies force to the environment. As the Jacobian transpose is 

a projection map between the applied force to the environment and the actuator forces 

causing this moment. In this section, we focus our attention on the deflections of the 

manipulator’s moving platform that are the result of the applied moment to the 

environment. In parallel manipulators, stiffness is an important performance 

parameter spatially in high-speed machine tool application for higher accuracy. When 

the end effector moves to perform a specific task, it exerts some force and/or moment, 

which cause the end effector deflection form desired location.  This deflection is the 

function of the stiffness and the force applied, therefore the stiffness has the direct 

impact on positional accuracy of the manipulator. There are many factors that affect 

the stiffness e.g. material and size of the manipulator links, actuators and the 

mechanical transmission system. The most important factor is the structure of the 

manipulator. Using closed-kinematic chains in the structure of the robot contributes 

significantly to higher stiffness and better positioning accuracy. Here we assume that 

the links are perfectly rigid. The stiffness of the parallel manipulator can be described 

by the stiffness matrix. The stiffness matrix is the relation between the forces and 

torques applied at the end effector in Cartesian space and the corresponding Cartesian 

linear and angular displacements.  

Let  is the vector of actuators joint torque or force and the joint 

deflection . and  can be related by  diagonal 

matrix. Let  so the relation will become as. 
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                   (5.1) 

It is known that the joint deflection  is related to end effector deflection  by the 

jacobian matrix. 

                   (5.2) 

Where  

We know that the is the vector of output force and moment, which is 

related to the joint torque  by jacobian matrix as.  

                   (5.3) 

Putting the  from Eq.(5.2) into Eq.(5.1) and the resulting Eq. into Eq.(5.3) we get 

                   (5.4) 

Here  called as the stiffness matrix for the parallel manipulator. However 

the stiffness matrix is symmetric positive semidefinite, and it depends upon the 

manipulator configuration. When all the actuators are the same type, the stiffness 

constant will also be same as  then Eq.(5.4) will be reduced to 

the form. 

                   (5.5) 

5.2 Analytical model: 

The analytical model of for the 3 PRS parallel kinematic manipulator is derived by 

putting the unit vectors of the fixed base, actuators, fixed leg and the moving platform 

into final jacobian matrix .  
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Where  and  

To find the jacobian matrix  we need to put unit vector of &  

From Eq.(4.14) 

  

The unit vector  for  can be obtain from Eq.(3.27)   

                       (5.6) 

 From Eq.(3.25) 

                   (5.7) 

From constraints Eq.(3.20) and (3.24), values of   can be derived from Eq.(3.13) to 

(3.15)  as 

                 (5.8) 

               (5.9) 

             (5.10)  
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Simplifying Eq.(5.8) to (5.10) obtained. 

                (5.11) 

              (5.12) 

              (5.13)

  

Values of  can be obtained from Eq.(5.7) 

               (5.14) 

             (5.15) 

             (5.16) 

 

The unit vector can be obtained from Eq.(5.6) 
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(5.17) 

 

 

(5.18) 

 

 

(5.19) 

 

From Eq.(4.14) we can find the jacobian matrix  

  

The unit vector can be calculated by putting the elements of rotation matrix (Eq.3.1) 

into Eq.(3.12) as 

                 (5.20) 

              (5.21) 

              (5.22) 
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Taking the cross product of  and  from Eq.(5.20) to (5.22) with (5.17) to 

(5.19). 

 
                  (5.23) 

               (5.24) 

Where  

 

 

 

 

 

     

               (5.25) 
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=  

 

and from Eq.(4.15)  

 

Taking the dot product for  for i=1 to 3. 

 

 
                  (5.26) 

             (5.27)  

Where     

 

 

 

             (5.28) 

Where 
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Finally we get the  matrix as. 

              (5.29) 

Where  
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Where 
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To find we find the derivative from the constraint Eq.(4.17), (4.19) and (4.20) for 

Eq.(4.22) as 

                

Where  

 



 

46 

 

 

 

 

 

 

 

 

 

Writing the elements of rotation matrix from Eq.(3.4) into Eq. (5.29) and multiplying 

with Eq.(4.22) to get the final jacobian matrix  as 

               (5.30) 

Eq.(5.30) is called the final jacobian matrix of the 3PRS manipulator. Once the is 

found we can find the stiffness from the Eq.(5.5)  

Above presented approach is the analytical method to find the stiffness for the 3PRS 

manipulator. However this approach is very time consuming. So numerical method 

preferred as compared the analytical method. One of the numerical method is 

presented in chapter 6. 
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Chapter 6 

6 RESULTS AND DISCUSSION 

6.1 Introduction 

This chapter gives detailed information about the 3PRS system. First the inverse 

kinematics is calculated from the code writing in MATLAB
®
 then the numerical 

solutions of forward kinematics are calculated. Before performing a detail study of 

Dynamics of 3PRS parallel manipulator, Singularity Analysis is performed to find 

non-working configuration of manipulator. The Stiffness analysis is done numerically 

then compared with the CAD FEA model. 

Five configurations are taken randomly form the CAD model and there values are 

taken to compare the results of computational kinematic and stiffness analysis.  

These configurations are shown in Fig 6.1 to 6.5 and the parameters of the model are 

presented in table 6.1.the values of all configurations are shown in Table 6.2 

Table 6.1 Architecture parameters for 3 PRS manipulator 

Parameters 

a 400mm 

b 200mm 

l 550mm 
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Table 6.2 Actuated Joint variables and unconstraint variable for 5 configurations from 

the CAD Model. 

Configuration d1(mm) d2(mm) d3(mm) pz(Rad) ψ(Rad) ϴ(Rad) 

1 80.67 353.5 -5.627 -598.8 -0.751 -0.089 

2 242.9 171.5 90.782 -628.3 -0.147 0.217 

3 300 150 15 -610.3 -0.333 0.46 

4 -89.23 -25.25 -103.698 -444.4 -0.212 -0.065 
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5 100.5 91.81 -80.567 -521.2 -0.6 0.35 

 

 

Fig. 6.1 CAD Model of Configuration-1 for 3-PRS manipulator 

Fig 6.1 shows the position of the end effector at = -598.8 mm  = -0.751 rad and  

= -0.089 rad at actuators positions mm for 

configuration-1 

 

Fig 6.2 CAD Model of Configuration-2 for 3-PRS manipulator 
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Fig 6.2 shows the position of the end effector at = -628.3 mm  = -0.147 rad and  

= 0.217 rad at actuators positions  mm for 

configuration-2 

 

Fig. 6.3 CAD Model of Configuration-3 for 3-PRS manipulator 

Fig 6.3 shows the position of the end effector at = -610.3 mm  = -0.333 rad and  

= 0.46 rad at actuators positions  mm for configuration-3 
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Fig. 6.4 CAD Model of Configuration-4 for 3-PRS manipulator 

Fig 6.4 shows the position of the end effector at = -444.4 mm  = -0.212 rad and  

= 0.065 rad at actuators positions  mm for 

configuration-4 

  

Fig. 6.5 CAD Model of Configuration-5 for 3-PRS manipulator 

Fig 6.5 shows the position of the end effector at = -521.2 mm  = -0.6 rad and  = 

0.35 rad at actuators positions  mm for 

configuration-5 

6.2 Inverse kinematic of 3-PRS manipulator 

The analytical model of 3PRS manipulator presented in chapter 3 is solved by a 

MATLAB program which is shown in Appendix A. the result form the MATLAB 

program is shown in Table 6.3. These Results shows small difference between the 

CAD model and analytical model results. The percentage error between CAD model 

and analytical Model Results is shown in Table 6.4 

Table 6.3 Comparison of the CAD model and Analytical Model Results for Inverse 

Kinematic  

Inverse Kinematic Results 

Values of actuators from CAD model 

(mm) 

Analytical model results 

(mm) 
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Sr.No d1 d2 d3 d1 d2 d3 

1 80.669 353.505 -5.627 88.77 350.01 -5.68 

2 242.861 171.542 90.782 241.81 169.31 93.04 

3 300 150 15 289.87 154.81 17.31 

4 -89.231 -25.252 -103.698 -88.84 -26.10 -103.38 

5 100.489 91.806 -80.567 83.56 105.15 -80.04 

 

Table 6.4 Percentage Error between CAD model and Analytical Model Results for 

Inverse Kinematic  

Inverse Kinematic Results 

% Error 

d1 d2 d3 Average 

10.04% 0.99% 0.94% 3.99% 

0.43% 1.30% 2.49% 1.41% 

3.38% 3.21% 15.40% 7.33% 

0.44% 3.37% 0.31% 1.37% 

16.85% 14.53% 0.66% 10.68% 

6.3 Numerical Analysis for Forward Kinematics of 3-PRS 

Parallel Manipulator 

The analytical solution for forward is kinematic gives all the possible configuration of 

moving platform which is detail derived in chapter 3. However, it is a very time-

consuming work and many of the solutions are meaningless. So, to reduce our effort 

for finding only meaningful solutions, we shift towards a better and time-saving 

numerical approach. 

From viewing the equations of kinematics and dynamics in the analytical analysis, 

equations involved are first order differential equations. Therefore, we can calculate 

the forward kinematics by classical Newton-Raphson Iterative method. 

6.3.1 Newton‘s method for forward kinematics of 3 PRS manipulator 

To implementation of Newton’s method for forward kinematics, let at a certain pose 

of moving platform of 3PRS parallel manipulator the equation can be represented by 

the independent variable i-e .  This equation for this function is  
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                (6.1) 

where  is the joint space co-ordinates vector calculated form the inverse 

kinematic analytical solution and  is  the known joint space co-ordinate which 

can be directly measured. Let the set of independent variables  be denoted 

by . Since the Newton’s method is given by  

                   (6.2) 

So,  

                    (6.3) 

As , So   

                    (6.4) 

Since . So, 

                     (6.5) 

Rewriting equation as 

                 (6.6) 

This is the Newton’s iterative equation for forward kinematic 3PRS manipulator. 

The tolerance criteria used to end the iterative process is when the maximum absolute 

value of  is less than a specified tolerance. For the selection of the 

initial guess, it is necessary to select a set of values as close as possible to the actual 

pose of the moving platform since there are multiple forward kinematics solutions. In 

practice, such an initial guess can be choose as the desired pose calculated from the 

analytical forward position kinematics analysis or the measured pose of the moving 
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platform at the initial configuration, or even the previous point on the trajectory at a 

short time interval in the past. 

 

Fig. 6.6 Flow chart of Newton's method for 3PRS parallel manipulator 

The flow chart of Newton’s method is given in the Fig.6.6. The given flow has been 

implemented in MATLAB. The implemented code is given in Appendix A. The 

known joint space co-ordinate and initial guessed joint space co-ordinate is given to 

program as input. The Jacobian is calculated from initial guess. The new joint space 

co-ordinate is calculated from the Newton’s method for forward kinematic. 

The code then calculates the tolerance criteria and check the given tolerance if the 

calculated tolerance is less than the given tolerance than the code updates the initial 

guessed value by replacing it with new calculated co-ordinates. 
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 If calculated tolerance becomes greater than the given tolerance than the program 

stops and we get the solution for forward kinematic of 3PRS parallel manipulator. The 

results are shown in Table 6.5. 

Table 6.5 Comparison of the Numerical model results with CAD model unconstrained 

Variables 

Values form CAD model Initial guess Numerical model results 

Configuration pz ψ ϴ pz ψ ϴ Iterations pz ψ ϴ 

1 -598.75 -0.751 -0.089 -600 -0.68 -0.08 23 -598.80 -0.751 -0.089 

2 -628.33 -0.147 0.217 -626 -0.15 1.21 93 -628.30 -0.15 1.23 

3 -610.27 -0.333 0.46 -615 -0.4 0.5 17 -610.30 -0.333 0.460 

4 -444.38 -0.212 -0.065 -440 -0.2 -0.06 6 -444.40 -0.21 -0.07 

5 -521.18 0.6 -0.35 -520 0.55 -0.32 14 -521.200 0.600 -0.350 

Above presented technique with the initial guess for CAD model, 5 configurations are 

solved the results deviates a little form desired position. Percentage Error between 

Numerical model results with CAD model unconstrained Variables is shown in Table 

6.6. 

Table 6.6 Percentage Error between Numerical model results with CAD model 

unconstrained Variables 

Forward Kinematic Results 

% Error 

pz ψ ϴ Average 

0.008% 0.027% 0.224% 0.086% 

0.005% 0.273% 466.820% 155.699% 

0.006% 0.000% 0.000% 0.002% 

0.004% 0.000% 0.000% 0.001% 

0.004% 0.000% 0.000% 0.001% 

 

Let we take configuration-4 in which the convergence is reached after six iterations. 

The iteration results are shown in Table 6.7.  



 

56 

 

 

 

Table 6.7 Iteration results of using Newton method to solved forward kinematic of    

3-PRS manipulator 

Iteration values for Configuration-4 

Iterations pz ψ ϴ 

0 -440 -0.2 -0.06 

1 -444.56 -0.2126278 -0.0653 

2 -444.39 -0.2119722 -0.065 

3 -444.4 -0.2120009 -0.065 

4 -444.4 -0.2119999 -0.065 

5 -444.4 -0.212 -0.065 

6 -444.4 -0.212 -0.065 
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6.4 Singularity Analysis 

The importance of knowledge of singularities is that it helps in path planning and 

geometric design of manipulator workspace, which is free from singularities at 

designing stage. The investigation of singularity analysis of parallel robots gives an 

insight on the better design and control of manipulator. 

For 3-PRS parallel manipulator, singularity analysis is based on the instantaneous 

kinematics, which is described by Eq.(5.2). 

  

Where  represent the vector of output moving platform and  is input accuator joint 

rates. The three types of singularities are discussed below. 

6.4.1 Inverse Kinematics Singularity 

The inverse kinematics singularity occur when   is non invertible i-e . 

So, when this condition is satisfied then 

                (6.7) 

This physical interpretation of this equation is that one or more of the leg is 

perpendicular to their corresponding actuator directions. This causes the manipulator 

to lose one or more degree of freedom depending upon the number of legs 

perpendicular to corresponding actuator. This type of singularity is shown in Fig.6.7 

by the CAD model. 
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Fig. 6.7 Inverse kinematic singularity of 3-PRS manipulator  

 

6.4.2 Direct Kinematic Singularity 

Now this type of singularity arises when  is not invertible. Since, matrix  is not a 

square matrix, this type of singularity will occur when matrix is not of full rank, i-e, 

its rank is equal to or .  As  is given by Eq.(4.14). 

 

We can see that  represent a normal vector , which is perpendicular to the 

plane containing points , ,  therefore the three vectors of  are parallel to fixed 

base platform. But  is not rank deficient, even if  are linearly dependent or only 

one of three vectors have zero components. If two or all the three vectors have zero 

components  will become singular. 
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Fig. 6.8 Inverse kinematic singularity of 3-PRS manipulator  

 

                   (6.8) 

This equation physically shows that links are aligned with the moving platform, with 

the external lines  passing through the center point of moving platform denoted 

by . This singularity causes the platform to gain one or more degree of freedom even 

when there is a locking of all actuators. The forward kinematic singularity is shown in 

figure 5.8 using a CAD model. 

6.4.3 Combined Singularity 

As the name suggest, this type of singularity will occurs if both of the above 

singularity condition is satisfied i-e  is not invertible and  is not full rank. For this 

type of singularity to occur the manipulator must have special kinematic architecture. 

6.5 Stiffness Analysis 

The stiffness characteristics along with the fixed actuator angle  are calculated 

using numerical method. It is one of the most important performance parameter of 

parallel mechanism, especially for those cases which are used as machine tools, since 

the stiffness of a manipulator has direct impact on its position accuracy. The stiffness 

of 3PRS manipulator depends on several factors including size and material of the 
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links, mechanical transmission, actuators and controller. For our case study, we 

suppose that links are perfectly rigid and main sources of compliance come from the 

compliance of the actuators. 

6.5.1 Stiffness matrix generation 

The output force of end effector is denoted by a three dimensional vector 

, similarly the end effector output moment is denoted by  

and a vector of actuated joint forces is represented by .  

Let  be the vector of virtual linear displacements with respect to 

moving platform,  be the vector of virtual angular displacements 

about instantaneous axis of the moving platform. The vector of virtual displacements 

related to actuated joints be . So, . According to 

principle of virtual work, we can obtain 

                  (6.9) 

Let  be the vector of virtual linear and angular displacements of 

moving platform, this implies 

                  (6.10) 

The 3x6 matrix can be expressed by upper and lower 3x3 matrices and . Then  

                  (6.11) 

                  (6.12) 

Hence 

                  (6.13) 
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                  (6.14) 

Substituting above values in principle of virtual work 

                (6.15) 

For any arbitrary displacement  above equation holds. So, 

                (6.16) 

Taking Transpose 

                 (6.17) 

The relation between  and  can be shown by the following equation 

                  (6.18) 

Where  is a 3 3 diagonal matrix. This can be shown that 

                 (6.19) 

Hence 

                 (6.20) 

Where 

                  (6.21) 

This K is the stiffness matrix of a general 3PRS parallel manipulator. Where      

 represent the output force of the moving platform. The stiffness matrix K 

is symmetric, positive and manipulator dependent. 

Let  be eigenvalue and  be the corresponding eigenvectors of the stiffness matrix 

 at given position. Here represents the stiffness of the manipulator in 

corresponding eigenvector direction. It follows that if  denotes the minimum 
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eigenvalue and  denotes the maximum eigenvalue, then the minimum stiffness 

occurs in and maximum stiffness occurs in . 

6.5.2 Simulation results 

The architecture parameters for 3PRS manipulator is shown in table 6.1and stiffness 

constant is taken to be 19500 N/m for each of the linear actuator. A MATLAB 

program is written to find the maximum and minimum stiffness of the general 3PRS 

mechanism which is shown in Appendix A. the results are shown in Fig 6.9 and 6.10. 

Let we take  = -0.59 M from configuration -1 and corresponding values for  &  

are -0.751 and -0.089 respectively. The results shows the value of maximum stiffness 

at this points, is equal to be 156.448 KN/m. 

 

Fig. 6.9 Maximum stiffness of 3PRS mechanism at height Pz=-0.59m 
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Fig. 6.10 Minimum stiffness of 3PRS mechanism at height Pz=-0.59m 

6.5.3 Comparison with the FEA model Results  

The detail design of the 3PRS is carried out on CAD software AUTODESK 

INVENTOR PROFESSIONAL with the same parameters as described in table 6.1. 

The stiffness of the model is also carried out on stress analysis tool for configuration-

1 as shown in Fig 6.11 with 0.1 KN force is applied at the tool tip. Fig 6.11 shows the 

total displacement of the manipulator .the stiffness can be obtain by the relation . 

Where the applied force is denoted by  and  is the total deflection. From the 

model FEA analysis we obtain the maximum stiffness = 156.274 KN/m. Table 6.8 

shows the comparison of results with both numerical model and the FEA model. Fig 

6.12, 6.13 and 6.14 shows the displacement distribution along X-axis, Y-axis and Z-

axis respectively. 
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Fig. 6.11 Total deformation with 0.1 KN force applied at tool tip 

In Fig. 6.11 the fixed base is constrained and the 0.1 KN force is applied at tool tip the 

results shows with the maximum total displacement of 0.03399 mm  

 

Fig. 6.12 Total deformation with 0.1 KN force applied at tool tip along X-axis 

In Fig. 6.12 the fixed base is constrained and the 0.1 KN force is applied at tool tip the 

results shows with the maximum displacement of 0.01738 mm  along X-axis 
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Fig. 6.13 Total deformation with 0.1 KN force applied at tool tip along Y-axis 

In Fig. 6.13 the fixed base is constrained and the 0.1 KN force is applied at tool tip the 

results shows with the maximum displacement of 0.05905 mm  along Y-axis 

 

Fig. 6.14 Total deformation with 0.1 KN force applied at tool tip along Z-axis 

In Fig. 6.14 the fixed base is constrained and the 0.1 KN force is applied at tool tip the 

results shows with the maximum displacement of 0.03898 mm along Z-axis 

 

 



 

66 

 

Table 6.8 Comparison of results obtain from numerical method and FEA model  

Maximum Stiffness (KN/m) 

Numerical Model 156.448 

FEA Model 156.274 
 

Fig 6.15 shows the bar chart of the values obtain form the stiffness model and the 

FEA model the numerical model shows the stiffness equal to 156.448 KN/m and the 

values obtain form the FEA model are equal to the 156.274 KN/m. 

 

Fig. 6.15 Bar Chart for the values of Maximum stiffness 

These results show with a percentage error of 0.1% which shows the validity of the 

presented approach. 
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Chapter 7 

7 CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

7.1 Conclusions 

The kinematic and stiffness analysis of 3PRS manipulator is performed in this thesis. 

In the kinematic analysis both inverse and forward kinematic analysis is investigated 

by analytical method. Since the analytical solution for forward kinematic is very 

complicated and time consuming so another better and time-saving numerical 

approach can be implemented. This approach has a better match of result with the 

virtual prototype CAD model measurements. 

Singularity analysis of 3PRS mechanism is performed and implemented in the 

physical CAD model. The better geometric design can be achieve by the knowledge 

of the type of the singularity. Here we introduce three types of singularities  

Stiffness analysis of the 3PRS manipulator is derived and solved by numerical 

method. The minimum and maximum eigenvalues of the stiffness matrix are 

commonly used performance indices. These values can be used to estimate the 

stiffness of the 3 PRS manipulator. The FEA is performed and compared. These 

results are closely matched with a percentage error of 0.1%. 

7.2 Future recommendations 

In future it is recommended that the presented model can be applied during the design 

stage of the parallel manipulator especially for the 3PRS manipulator. 

The presented model can be implemented by developing the actual mechanism in real 

and check the forward and inverse kinematic. 

In future the model is applied in industry for application like machining, medical etc. 

The stiffness characteristics can be checked at different actuator angle (  by using 

the presented model  
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APPENDIX A: MATLAB PROGRAM CODES  

Forward kinematic MATLAB Code 

% forward kinamatic solution of 3 PRS manipulator 
% input matrix = initial guess 
x1=[-600 -0.68 -0.08]; 
x2=[-626,-0.15,1.21]; 
x3=[-615,-0.4,0.5]; 
x4=[-440,-0.2,-0.06]; 
x5=[-520,0.55,-0.32]; 
X={x1 x2 x4 x5}; 
A={[-598.8,-0.751,-0.089],[-628.3,-0.147,1.23],[-610.3,-

0.333,0.46],[-444.4,-0.212,-0.065],[-521.2,0.6,-0.35]}; 
% call the function of forwaed kianamtic solution 
% newton iterative method 
%Fwd(x1,A{1}) 
%Fwd(x2,A{2}) 
%Fwd(x3,A{3}) 
Fwd(x4,A{4}) 
%Fwd(x5,A{5}) 

Function for Forward kinematic 
       function [ Out ] = Fwd(input1,input2) 
% Solution of forward Position Kinematics 
% Given the Value initial guess = xO 
% Input Matrix = [xO, a, b, l, alpha] 
     %Objective  
% Newton - iterative Method    
% A=[Pz, Psi, Theta, a, b, l, alpha] 
A = [input2 400 200 550 30]; 
% xO= initial guess 
xO = [input1 400 200 550 30]; 
i=0; 
condition = true; 
while condition 
    % xN= new x 
      xN  = ((xO(1:3))' - ((J(xO))\(Inv(xO)-Inv(A))'))'; 
    i=i+1; 
     disp(['The values for ', num2str(i),' iteration is : ', 

num2str(xN)]); 
    if abs(Inv([xN 400 200 550 30])-Inv(A)) <= 0.000001 
        condition = false; 
        Out = xN; 
    else 
        xO = [xN 400 200 550 30]; 
    end 
end 
end 
function [FinalJ] = J(input) 
%inputs 
pz = input(1); 
psi = input(2); 
theta = input(3); 
a= input(4); 
b = input(5); 
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l = input(6); 
alpha = input(7)*pi/180; 
%Output 
le= nan(3,3); 
L = nan(3,3); 
D = Inv(input); 
%Constraints 
phi = atan((sin(psi)*sin(theta))/(cos(psi)+cos(theta))); 
px = (b/2)*(cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi)-

cos(psi)*cos(phi)); 
py = -b*cos(psi)*sin(phi); 
%The Rotation Matrix 
R = [cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi) -

cos(theta)*sin(phi)+sin(psi)*sin(theta)*cos(phi) 

cos(psi)*sin(theta);... 
    cos(psi)*sin(phi) cos(psi)*cos(phi) -sin(psi);... 
    -sin(theta)*cos(phi)+sin(psi)*cos(theta)*sin(phi) 

sin(theta)*sin(phi)+sin(psi)*cos(theta)*cos(phi) 

cos(psi)*cos(theta)]; 
% Value of Q's 
q1 = [px+b*R(1,1);py+b*R(2,1);pz+b*R(3,1)]; 
q2 = [px-b*R(1,1)/2+(sqrt(3)/2)*b*R(1,2);py-

b*R(2,1)/2+(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2+(sqrt(3)/2)*b*R(3,2)]; 
q3 = [px-b*R(1,1)/2-(sqrt(3)/2)*b*R(1,2);py-b*R(2,1)/2-

(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2-(sqrt(3)/2)*b*R(3,2)]; 
Q = [q1 q2 q3]; 
%Position vectors of fixes base 
a1 = [a;0;0]; 
a2 = [-a/2;(sqrt(3)/2)*a;0]; 
a3 = [-a/2;-(sqrt(3)/2)*a;0]; 
b1 = [b;0;0]; 
b2 = [-b/2;(sqrt(3)/2)*b;0]; 
b3 = [-b/2;-(sqrt(3)/2)*b;0]; 
A = [a1 a2 a3]; 
% Position vector of actuators 
d10 = [-cos(alpha);0;-sin(alpha)]; 
d20 = [cos(alpha)/2;-(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
d30 = [cos(alpha)/2;(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
D0 = [d10 d20 d30]; 
% jacobian Matrix 
for i=1:3 
    L(1:3,i) = Q(1:3,i) - A(1:3,i); 
   le(1:3,i)=(L(1:3,i)-D(1,i)*D0(1:3,i))/l; 
end 
Jx=[le(1:3,1)'(cross(b1,le(1:3,1)))';le(1:3,2)' 

(cross(b2,le(1:3,2)))';le(1:3,3)' (cross(b3,le(1:3,3)))']; 
Jq=[dot(le(1:3,1),d10) 0 0;0 dot(le(1:3,2),d20) 0;0 0 

dot(le(1:3,3),d30)];  
Ja=Jq\Jx; 
f11=0; 
f12=b/2*(cos(psi)*sin(theta)*sin(phi)+sin(psi)*cos(phi)); 
f13=b/2*(-sin(theta)*cos(phi)+sin(psi)*cos(theta)*sin(phi)); 
f21=0; 
f22=-b*sin(psi)*sin(phi); 
f23=0; 
f61=0; 
f62=sin(theta)/(cos(psi)*cos(theta)+1); 
f63=sin(psi)/(cos(psi)*cos(theta)+1); 
 Jr=[f11 f12 f13;f21 f22 f23;1 0 0;0 1 0;0 0 1;f61 f62 f63]; 
FinalJ=Ja*Jr; 
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End 

Inverse kinematic MATLAB Code 

% inverse kinamatic solution of 3 PRS manipulator 
% Input Matrix = [Pz, Psi, Theta, a, b, l, alpha] 
% where 
% pz psi & theta are the Cartesian pose of the en effector 
% a= radious of fixed base 
% b= radious of moving platform 
% l= fixed leg length 
% alpha =actuator layout angle 
%let A is input matrix 

  
%A = [-598.8 -0.7512 -0.0892 400 200 550 30]; 
%A = [-628.3 -0.147 0.217 400 200 550 30]; 
%A = [-610.3,-0.333,0.46 400 200 550 30]; 
%A = [-444.4 -0.21 -0.065 400 200 550 30]; 
A = [-521.2,-0.6,0.35 400 200 550 30]; 

  
%call the function of inverse kinamatic 
Inv(A) 
%answer will show the position of [d1 d2 d3] the actuator position 

Function for Inverse kinematic 

function [ D ] = Inv( input ) 
% Solution of Inverse Position Kinematics 
% Given the Value Pz, Psi and Theta 
% Finding Py, Px and Phi from Constraints 
% Input Matrix = [Pz, Psi, Theta, a, b, l, alpha] 

  
%inputs 
pz = input(1); 
psi = input(2); 
theta = input(3); 
a= input(4); 
b = input(5); 
l = input(6); 
alpha = input(7)*pi/180; 

  
%Output 
L = nan(3,3); 
D = nan(1,3); 

  
%Constraints 
phi = atan((sin(psi)*sin(theta))/(cos(psi)+cos(theta))); 
px = (b/2)*(cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi)-

cos(psi)*cos(phi)); 
py = -b*cos(psi)*sin(phi); 

  

  
%The Rotation Matrix 

  
R = [cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi) -

cos(theta)*sin(phi)+sin(psi)*sin(theta)*cos(phi) 

cos(psi)*sin(theta);... 
    cos(psi)*sin(phi) cos(psi)*cos(phi) -sin(psi);... 
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    -sin(theta)*cos(phi)+sin(psi)*cos(theta)*sin(phi) 

sin(theta)*sin(phi)+sin(psi)*cos(theta)*cos(phi) 

cos(psi)*cos(theta)]; 

  
% Value of Q's 
q1 = [px+b*R(1,1);py+b*R(2,1);pz+b*R(3,1)]; 
q2 = [px-b*R(1,1)/2+(sqrt(3)/2)*b*R(1,2);py-

b*R(2,1)/2+(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2+(sqrt(3)/2)*b*R(3,2)]; 
q3 = [px-b*R(1,1)/2-(sqrt(3)/2)*b*R(1,2);py-b*R(2,1)/2-

(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2-(sqrt(3)/2)*b*R(3,2)]; 
Q = [q1 q2 q3]; 

  
%Position vectors of fixes base 
a1 = [a;0;0]; 
a2 = [-a/2;(sqrt(3)/2)*a;0]; 
a3 = [-a/2;-(sqrt(3)/2)*a;0]; 
A = [a1 a2 a3]; 

  
% Position vector of actuators 
d10 = [-cos(alpha);0;-sin(alpha)]; 
d20 = [cos(alpha)/2;-(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
d30 = [cos(alpha)/2;(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
D0 = [d10 d20 d30]; 

  
%Inverse Kinematics Solutions 
for i=1:3 
    L(1:3,i) = Q(1:3,i) - A(1:3,i); 
    D(1,i) = dot(L(1:3,i),D0(1:3,i)) - 

sqrt((dot(L(1:3,i),D0(1:3,i)))^2 - dot(L(1:3,i),L(1:3,i)) + l^2); 
end 

Stiffness analysis MATLAB Code 

 
clear 
clc 
%inputs 
a=0.4; 
b=0.2; 
l=0.55; 
k=19500; 
alpha=30; 
pz=-0.59; 

  
kappa = [k 0 0;0 k 0;0 0 k]; 
psi=linspace(1,-1,60); 
theta=linspace(1,-1,60); 

  
lambda_min = nan(length(psi),length(psi)); 
lambda_max = nan(length(psi),length(psi)); 

  
[Psi,Theta]=meshgrid(psi,theta); 

  
for i=1:length(Psi) 
    for j=1:length(Psi) 
        K= 

(J([pz,Psi(i,j),Theta(i,j),a,b,l,alpha]))'*kappa*(J([pz,Psi(i,j),Thet

a(i,j),a,b,l,alpha])); 



 

72 

 

        %eigenvalue of Stiffness Matrix 
        [EV,E]=eig(K); 
        if Psi(i,j)>0.5 || Psi(i,j)<-0.5 || Theta(i,j)>0.5 || 

Theta(i,j)<-0.5 
           lambda_min(i,j) = 0; 
        else 
            lambda_min(i,j) = min(diag(E)); 
        end 
        if Psi(i,j)>0.5 || Psi(i,j)<-0.5 || Theta(i,j)>0.5 || 

Theta(i,j)<-0.5 
            lambda_max(i,j) = 0; 
        else 
            lambda_max(i,j) = max(diag(E)); 
        end 
    end 
end 
%plots of lambda Max and Min 
figure(1) 
mesh(Psi,Theta,lambda_min); 
%zlim([0 25]); 
xlabel('\psi (rad)') 
ylabel('\theta (rad)') 
zlabel('\lambda_{min} (N/m)') 

  
figure(2) 
mesh(Psi,Theta,lambda_max); 
xlabel('\psi (rad)') 
ylabel('\theta (rad)') 
zlabel('\lambda_{max} (N/m)') 

Function for Jacobian  
function [FinalJ] = J(input) 
%inputs 
pz = input(1); 
psi = input(2); 
theta = input(3); 
a= input(4); 
b = input(5); 
l = input(6); 
alpha = input(7)*pi/180; 

  
%Output 
le= nan(3,3); 
L = nan(3,3); 
D = Inv(input); 
%Constraints 

  
phi = atan((sin(psi)*sin(theta))/(cos(psi)+cos(theta))); 
px = (b/2)*(cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi)-

cos(psi)*cos(phi)); 
py = -b*cos(psi)*sin(phi); 

  

  
%The Rotation Matrix 

  
R = [cos(theta)*cos(phi)+sin(psi)*sin(theta)*sin(phi) -

cos(theta)*sin(phi)+sin(psi)*sin(theta)*cos(phi) 

cos(psi)*sin(theta);... 
    cos(psi)*sin(phi) cos(psi)*cos(phi) -sin(psi);... 
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    -sin(theta)*cos(phi)+sin(psi)*cos(theta)*sin(phi) 

sin(theta)*sin(phi)+sin(psi)*cos(theta)*cos(phi) 

cos(psi)*cos(theta)]; 

  
% Value of Q's 
q1 = [px+b*R(1,1);py+b*R(2,1);pz+b*R(3,1)]; 
q2 = [px-b*R(1,1)/2+(sqrt(3)/2)*b*R(1,2);py-

b*R(2,1)/2+(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2+(sqrt(3)/2)*b*R(3,2)]; 
q3 = [px-b*R(1,1)/2-(sqrt(3)/2)*b*R(1,2);py-b*R(2,1)/2-

(sqrt(3)/2)*b*R(2,2);pz-b*R(3,1)/2-(sqrt(3)/2)*b*R(3,2)]; 
Q = [q1 q2 q3]; 

  
%Position vectors of fixes base 
a1 = [a;0;0]; 
a2 = [-a/2;(sqrt(3)/2)*a;0]; 
a3 = [-a/2;-(sqrt(3)/2)*a;0]; 
b1 = [b;0;0]; 
b2 = [-b/2;(sqrt(3)/2)*b;0]; 
b3 = [-b/2;-(sqrt(3)/2)*b;0]; 

  
A = [a1 a2 a3]; 

  
% Position vector of actuators 
d10 = [-cos(alpha);0;-sin(alpha)]; 
d20 = [cos(alpha)/2;-(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
d30 = [cos(alpha)/2;(sqrt(3)/2)*cos(alpha);-sin(alpha)]; 
D0 = [d10 d20 d30]; 
% jacobian Matrix 
for i=1:3 
    L(1:3,i) = Q(1:3,i) - A(1:3,i); 
   le(1:3,i)=(L(1:3,i)-D(1,i)*D0(1:3,i))/l; 
end 

  
Jx=[le(1:3,1)' (cross(b1,le(1:3,1)))';le(1:3,2)' 

(cross(b2,le(1:3,2)))';le(1:3,3)' (cross(b3,le(1:3,3)))']; 

  
Jq=[dot(le(1:3,1),d10) 0 0;0 dot(le(1:3,2),d20) 0;0 0 

dot(le(1:3,3),d30)];  

  
Ja=Jq\Jx; 
f11=0; 
f12=b/2*(cos(psi)*sin(theta)*sin(phi)+sin(psi)*cos(phi)); 
f13=b/2*(-sin(theta)*cos(phi)+sin(psi)*cos(theta)*sin(phi)); 
f21=0; 
f22=-b*sin(psi)*sin(phi); 
f23=0; 
f61=0; 
f62=sin(theta)/(cos(psi)*cos(theta)+1); 
f63=sin(psi)/(cos(psi)*cos(theta)+1); 

  
 Jr=[f11 f12 f13;f21 f22 f23;1 0 0;0 1 0;0 0 1;f61 f62 f63]; 

  
FinalJ=Ja*Jr; 
end 
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